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Abstract

Pulsation effect on heat transfer in laminar incompressible flow, which led to contradictory results in previous

studies, is theoretically investigated in this work starting from basic principles in an attempt to eliminate existing

confusion at various levels. First, the analytical solution of the fully developed thermal and hydraulic profiles under

constant wall heat flux is obtained. It eliminates the confusion resulting from a previously published erroneous solution.

The physical implications of the solution are discussed. Also, a new time average heat transfer coefficient for pulsating

flow is carefully defined such as to produce results that are both useful from the engineering point of view, and

compliant with the energy balance. This rationally derived average is compared with intuitive averages used in the

literature. New results are numerically obtained for the thermally developing region with a fully developed velocity

profile. Different types of thermal boundary conditions are considered, including the effect of wall thermal inertia. The

effects of Reynold and Prandtl numbers, as well as pulsation amplitude and frequency on heat transfer are investigated.

The mechanism by which pulsation affects the developing region, by creating damped oscillations along the tube length

of the time average Nusselt number, is explained. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Pulsatile flow is frequently encountered in natural

systems (circulatory system, respiratory system) as well

as engineering systems (reciprocating pumps, IC engines,

pulse combustors). It manifests itself in internal as well as

external flow situations (hot wire anemometer in a fluc-

tuating flow, tube bundles where vortex shedding from

the leading tube induces flow fluctuations on subsequent

tubes). Flow fluctuations may also be intentionally im-

posed in an attempt to improve heat transfer (pulsating

jet cooling). Although the problem has received consid-

erable attention, available results are contradictory, and

the question is still open: Does pulsation enhance or else

degrade heat transfer compared to steady flow?

In earlier studies, heat and mass transfer in pulsating

flow with zero net flow have received considerable at-

tention [1–3]. Fluid pulsates in a duct connecting two

reservoirs maintained at uniform temperature (or con-

centration). Both theoretically and experimentally a

tremendous improvement was noticed compared to the

non-pulsating case, which corresponds to pure conduc-

tion through the fluid between the two reservoirs. This

result cannot be extrapolated to the case of non-zero net

flow, since the basis of comparison is not the same

(conduction in one case and steady convection in the

other). For the sake of simplicity, the analysis will be

restricted to the case where superimposed pulsation

amplitude is less than the average flow. Hence, flow re-

versal is precluded, which simplifies boundary condi-

tions on both ends.

Kim et al. [4] numerically studied heat transfer in a

channel subject to a pulsating flow that enters the duct

with constant temperature. The study was made for the

thermally developing region of the channel, with a fully

developed velocity profile. A constant surface tempera-

ture was imposed at channel walls. The well-known

SIMPLER algorithm [5] based on the finite difference

method was used to solve the problem. They showed
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that in the fully developed region the difference between

the time average heat flux and the heat flux corre-

sponding to the steady flow case was generally small.

One may argue that the type of boundary conditions

used was too restrictive. Wall temperature was assumed

constant, both in space and time. This ties the heat ex-

change process, and may reduce the effect of pulsation.

Moschandreou and Zamir [6] analytically studied

pulsating flow in the thermally fully developed region in

a circular tube with an imposed constant wall heat flux.

They have found both positive and negative differences

(depending on operating conditions) between the time

average Nusselt number for pulsating flow Nuo, and the
corresponding Nusselt number for steady flow Nust.
However, their solution suggests the following strange

result: for very high frequency the difference between

Nuo and Nust continues to grow. As is well known, any
inertial system has a cut-off frequency above which it

should not be sensitive to oscillating excitations. In fact,

their analytical solution for the fully developed case was

erroneous and will be redone here, in order to obtain the

correct solution.

Compressibility may play a role in pulsating flow [7]

for tubes with constant wall heat flux using the method

of characteristics and assuming a flat velocity profile.

Pulsation effects were important when the frequency was

near that of resonance (i.e. sound speed divided by tube

length). In this work, pulsation frequency will be as-

sumed much lower than resonant frequency, which ap-

plies to most engineering applications. Hence the

analysis will be restricted to the incompressible case. On

the other hand velocity and temperature profiles will not

be considered as flat.

In a very interesting study [8], it was shown that for

the same spatial and temporal temperature distribution,

different definitions of average Nusselt number Nuo for

Nomenclature

Ao average pressure gradient (N=m3)

A1 amplitude of pressure gradient oscillations

(N=m3)

Ac cross-sectional area (m2)

ax, ay unit vectors along the flow and normal to the

flow, respectively

Bi Biot number, houtR=kf
C heat capacity (J/kg K)

D channel half depth (m)

f dependence of h1 on r (Eq. (3.4))
G Green’s function of Eq. (3.6)

g amplitude of oscillating velocity (Eq. (2.11b))

h heat transfer coefficient (W=m2 K)

Ir inertia ratio, ðsqsCsÞ=ðRqfCfÞ
i imaginary factor

J0 Bessel function of the first kind of order 0

K constant defined by (3.5b)

k thermal conductivity (W/m K)

L channel length (m)

n unit outward normal

Nu Nusselt number, hR=k
P pressure (N/m2)

P duct perimeter (m)

Pr Prandtl number, m=a
q heat flux (W=m2)

R duct radius (m)

r radial coordinate

Re Reynold number, ucR=m
s duct wall thickness (m)

T temperature (K)

t time

V velocity vector (m/s)

V volume (m3)

u, v velocity components

uc time average centerline velocity (m/s)

x, y coordinates along the flow and normal to it,

respectively

Y0 Bessel function of the second kind of order 0

Greek symbols

a thermal diffusivity (m2/s)

b dimensionless amplitude of pressure gradient

oscillations

d Dirac distribution

h dimensionless temperature

m kinematic viscosity (m2/s)

q density (kg/m3)

s dimensionless period of oscillation, s0m=R2

X, x dimensionless and dimensional

frequency

Subscripts

amb ambient

b bulk

f fluid

in inlet

o time average quantity

out outside

ref reference

s solid

st steady problem

t time dependent quantity

w wall

Superscripts
0 dimensional variable (used for r, x, y, t, u, v

and s)
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pulsating flow will lead to contradictory results. This

means that we may observe either enhancement or de-

gradation in Nuo, depending on how time average was
constructed from the same raw data. They have intu-

itively constructed four different definitions for the

constant wall heat flux case. They have recommended

the use of one of them, without giving a rigorous theo-

retical basis for that choice. A rational approach will be

proposed here in order to construct a new definition of

Nuo based on the energy equation and Newton’s law of
cooling, which can in addition be applied to other cases

of boundary conditions as well as in the thermally de-

veloping region.

Turbulent pulsating external flow has also received

attention in recent publications [9,10]. For turbulent

flow, it seems to be established that pulsation enhances

heat transfer. The effect is even higher if pulsation was

able to induce turbulence in an otherwise laminar flow.

Effects of pulsation on laminar–turbulent transitions

were also investigated [11]. This work will be devoted to

laminar flow, for which published results were not

conclusive.

The thermally developing region did not receive

sufficient attention in the literature. It is to be expected

that this region should be more sensitive to pulsation,

and that it should extend to a longer distance than that

of the corresponding steady flow. This was confirmed by

the numerical study of Kim et al. [4] for flow in 2D

channel with constant wall temperature. They found

that the difference between the time average Nusselt

number, according to their definition of that average,

and Nust fluctuated along the channel length. The dif-
ference was greater than the fully developed case,

though still relatively small. It started with a negative

value in the first part of the developing region. Since

oscillations were damped, the average along the channel

was rather negative, i.e. pulsation degraded heat trans-

fer. Wall temperature was assumed constant both in

space and time. It is to be expected that other less re-

strictive boundary conditions would manifest greater

sensitivity to pulsation. Hafez and Montasser [7] have

found that the difference between pulsating and non-

pulsating flow decreases along the tube length, which

confirms the fact that the thermally developing region is

more sensitive to pulsation.

To the authors knowledge, the effect of non-ideal

boundary conditions had never been addressed neither

experimentally nor theoretically. Hence, in this work,

the developing region will be systematically studied in

order to investigate the effect of different parameters,

under different types of boundary conditions. Two dif-

ferent cases of non-ideal boundary conditions will be

investigated. The first case is that of a finite thermal

resistance between fluid and its environment, also called

Robin type boundary condition. In the second case, tube

wall will be considered to have a finite thermal capacity.

Moreover, some discussions will be given about the ex-

pected effect of non-linear boundary conditions (natural

convection, radiation, . . .).
In the sequel, model equations will be derived, to-

gether with an adequate set of boundary conditions, cast

in a non-dimensional form. Section 3 will present the

analytical solution for the fully developed constant wall

heat flux case. Previous definitions of average Nu will be

critically revised in Section 4, to derive a new general

definition. The thermally developing problem will be

considered in Sections 5–7 for different kinds of non-

ideal boundary conditions. This will be followed by

conclusions in Section 8.

2. Assumptions and governing equations

As a result of the above analysis pulsating flow will

be considered here, under the following simplifying as-

sumptions:

1. The flow is assumed laminar and incompressible.

2. Pulsation amplitude does not allow flow reversal.

3. The velocity profile is fully developed but the thermal

boundary layer is developing. This applies to fluids

with high Prandtl number Pr, or moderate Pr with
an unheated section in the upstream side. It includes

most common engineering applications. It precludes

the case of liquid metals where the thermal boundary

layer development is not an issue.

4. Second-order effects, like the variation of thermo-

physical properties and viscous dissipation, are ne-

glected for simplicity.

Under these conditions, mass, momentum and en-

ergy equations are written as

r � V ¼ 0; ð2:1aÞ

oV=ot0 ¼ �rP=qf þ mfr2V; ð2:1bÞ

oT=ot0 þ V � rT ¼ afr2T ; ð2:1cÞ

where V is the velocity vector, t0 the time, P the pressure,
T the temperature, qf ; mf and af are, respectively, the
fluid density, kinematic viscosity and thermal diffusivity.

Since the velocity profile is assumed fully developed, the

hydrodynamic part would be completely specified by

imposing a pressure gradient, and boundary conditions

on the axis and at the wall:

rP ¼ �ax Ao
�

þ A1 cos x t0
�
; ð2:2Þ

ou0=or0 ¼ v0 ¼ 0 for r0 ¼ 0; ð2:3aÞ

u0 ¼ v0 ¼ 0 for r0 ¼ R: ð2:3bÞ

The pressure gradient contains a steady and a pulsating

part, of amplitudes Ao and A1, respectively. The unit
vector ax is in the x-direction parallel to the flow (Fig. 1),
x is the frequency, r0 is the radial coordinate (normal to
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flow direction), R is the tube radius, and u0 and v0 are the
axial and radial velocity components. Boundary condi-

tions should be imposed on temperature all around the

domain, since the energy equation is elliptic in space.

Constant temperature is assumed at inlet, and fully de-

veloped temperature profile at outlet:

for x0 ¼ 0 : T ¼ Tin; ð2:4aÞ

for x0 ¼ L : o=ox0 Twð½ � T Þ= Twð � TbÞ
 ¼ 0; ð2:4bÞ

where Tw is the wall temperature and Tb is the bulk
temperature defined as

Tb ¼
Z
Tu0 da

Z
u0 da

�
ð2:4cÞ

in which da is the element of area normal to flow. At the
centerline we have from symmetry,

for r0 ¼ 0 : oT=or0 ¼ 0: ð2:5Þ

Finally, at the wall, the more realistic case of a finite

wall thermal resistance will be considered (the wall

thermal capacitance will be considered in Section 7):

kf oT=or0jr¼R ¼ hout Tambð � T jr¼RÞ þ qw; ð2:6Þ

where kf is the fluid thermal conductivity, hout is an
equivalent coefficient related to external resistances, Tamb
is the ambient temperature and qw is an external source
of added heat.

In order to transform the above system into a non-

dimensional form, use will be made of the following

transformations:

x ¼ x0=ðR ReÞ; r ¼ r0=R; t ¼ t0mf=R2;

u ¼ u0=uc; h ¼ Tð � TinÞ=DTref ; ð2:7Þ

where Re ¼ ucR=m is the Reynolds number and uc is the
time average of the centerline velocity. The reference

temperature difference DTref in this case should be valid
in both extremes (constant temperature, constant heat

flux) as well as in all intermediate cases:

DTref ¼
Bi

1þ Bi Tambð � TinÞ þ
1

1þ Bi
qwR
kf

; ð2:8Þ

where Bi ¼ houtR=kf is the Biot number. The constant
wall temperature corresponds to Bi! 1, while the
constant heat flux corresponds to Bi ¼ 0.
Using the problem linearity, Womersley [12] has

analytically obtained

uðr; tÞ ¼ u0=uc ¼ uoðrÞ þ bu1ðr; tÞ; ð2:9Þ

where

uoðrÞ ¼ 1� r2 ¼ ustðrÞ; ð2:10Þ

u1 r; tð Þ ¼ g rð ÞeiXt; ð2:11aÞ

gðrÞ ¼ ð � i=XÞb1� J0ð
ffiffiffiffiffiffiffiffiffi
�iX

p
rÞ=J0ð

ffiffiffiffiffiffiffiffiffi
�iX

p
Þc; ð2:11bÞ

b ¼ 4A1=Ao; X ¼ xR2=mf ; and the reference velocity is
uc ¼ �AoR2=4qfmf .
It remains to solve the dimensionless energy equa-

tion, which takes the form

Pr oh=otð þ uoh=oxÞ ¼ r2�h; ð2:12Þ

where the RHS operator is a modified Laplacian oper-

ator

r2�h ¼ 1=Re2
� �

o2h=ox2 þ o2h=or2 þ 1=roh=or: ð2:13Þ

Problem control parameters are thus: X, b, Pr, Re and Bi.
Note that scaling xwith Re, confines the effect of Re into a
single term which is axial conduction. This term vanishes

in the fully developed region and is expected to be small

in the developing region. Hence the role of Re is limited
with this scaling of x. A fact that is of course only valid
for laminar flow. Values of b will be limited such as to
avoid flow reversal. No initial conditions will be im-

posed, since we are interested in the periodic steady state.

3. Fully developed flow at constant wall heat flux

In order to obtain an analytical solution of the fully

developed temperature profile h and constant wall heat
flux Moschandreou and Zamir [6] have split h into two
parts

hðx; r; tÞ ¼ hoðx; rÞ þ bh1ðr; tÞ; ð3:1Þ

Fig. 1. Problem description.
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where ho represents the steady part, which depends lin-
early on x due to the constant wall heat flux condition
(oho=ox ¼ 4=Pr), while h1 represents the pure oscillating
part. Substituting (3.1) in (2.12) yields two differential

systems, one for the time average part:

Pruo oho=ox ¼ r2�ho; ð3:2aÞ

hoð0; rÞ ¼ 0; oho=orjr¼1 ¼ 1; oho=orjr¼0 ¼ 0 ð3:2bÞ

and the other for the transient part:

Pr oh1=otð þ u1 oh0=oxÞ ¼ r2�h1; ð3:3aÞ

oh1=orjr¼1 ¼ 0; oh1=orjr¼0 ¼ 0: ð3:3bÞ

The solution of (3.2a) and (3.2b) is the same as that of

the fully developed steady problem ho ¼ hst [13]. Mosc-
handreou and Zamir [6] have seeked h1 in the form

h1ðr; tÞ ¼ 4f ðrÞeiXt: ð3:4Þ

Substituting this into Eq. (3.3a) and (3.3b) leads to the

ordinary differential equation

ðrf 0Þ0 þ K2rf ¼ r gðrÞ; ð3:5aÞ

where

K2 ¼ �iXPr ð3:5bÞ

with the following boundary conditions

f 0ð0Þ ¼ f 0ð1Þ ¼ 0: ð3:5cÞ

Their analytical solution of (3.5a)–(3.5c) was not

correct (Appendix A). The correct solution will be ob-

tained here using Green’s function Gðr; r00Þ satisfying

o=or ro=orG r; r00ð Þð Þ þ K2rG r; r00ð Þ ¼ d rð � r00Þ;
oG=orjr¼0;r¼1 ¼ 0;

ð3:6Þ

where dðr � r00Þ is the Dirac distribution. The solution
has the general form

G r; r00ð Þ ¼ C11J0 Krð Þ þ C12Y0 Krð Þ; 06 r < r00;
C21J0 Krð Þ þ C22Y0 Krð Þ; r00 < r6 1;

�
ð3:7Þ

where J0 and Y0 are the Bessel functions of the first and
second kinds, respectively, of order 0 and Cij are com-
plex functions of r00 (i.e., constants with respect to r). To
determine them, we need to use boundary conditions at

r ¼ 0; 1 as well as jump conditions at r ¼ r00:

Gjr¼r
00þ0

r¼r00�0 ¼ 0; roG=orjr¼r
00þ0

r¼r00�0 ¼ 1: ð3:8Þ

Hence

C11 ¼ p Y0 Kr00ð ÞJ 00 Kð Þ
�
� Y 0

0 Kð ÞJ0 Kr00ð Þ
�
=2J 00 Kð Þ;

C12 ¼ 0;
ð3:9aÞ

C21 ¼ �pJ0 Kr00ð ÞY 0
0 Kð Þ=2J 00 Kð Þ;

C22 ¼ pJ0 Kr00ð Þ=2: ð3:9bÞ

Substituting of the constants from (3.9a) and (3.9b) into

(3.7) we get G. Hence f is written as

f rð Þ ¼
Z 1

0

G r00; rð Þr00g r00ð Þ dr00: ð3:10Þ

The erroneous solution [6] has resulted in an unphysical

behavior in their results where the difference DNu ¼
Nuo � Nust continuously increases for large X. This is not
realistic since any inertial system should have a cut-off

frequency beyond which it should not respond to ex-

ternal excitations. Their solution showed a maximum

point at which heat transfer would be highly enhanced

by pulsation, which resulted in a great confusion in the

literature. Using the corrected temperature profile ob-

tained here with their definition of the average Nusselt

number ((4.4) below), we find that (Fig. 2):

1. the difference DNu is always negative, neither maxima
nor minima were observed;

2. the difference DNu is very small, less than 1% of the

steady Nu;
3. the difference DNu tends to zero as X tends to infinity.
As expected pulsation effect decreases as Pr increases
(Fig. 3).

4. The definition of average Nusselt number

The definition of average Nusselt number is not a

trivial matter [8]. Kim et al. [4] studied the case of flow in

a channel of depth 2D subject to constant wall temper-

Fig. 2. Effect of pulsation frequency X and amplitude b on Nu.

Fig. 3. Effect of Pr on Nu.
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ature Tw. They defined the instantaneous Nusselt num-
ber and its average as

Nu ¼ Do Tð½ � TinletÞ= Twð � TinletÞ
=oy0
		
y0¼D; ð4:1Þ

Nuo ¼ 1=s
Z s

0

Nu dt; ð4:2Þ

where y0 is the distance from the center line normal to

flow direction and s is the dimensionless period of os-
cillation. Expression (4.1) can be rewritten as

Nu ¼ qw= Twð½ � TinletÞ
D=k: ð4:10 Þ

The ratio between square brackets does not represent the

local instantaneous heat transfer coefficient. The latter

requires that the temperature difference be between wall

and fluid bulk, not inlet. The above definition was most

probably chosen in order to avoid a problem that will be

solved in this section. In fact, if both numerator and

denominator in (4:10) were time varying, then the time
average Nusselt number (4.2) would have required a

more elaborate analysis to define, which was not the

object of their work. For the constant wall heat flux case

the following definition was proposed [6]:

Nu ¼ ðqw=Tw � TbÞR=k ¼ 2=ðhw � hbÞ ð4:3Þ

to obtain the average Nuo in the form

Nuo ¼ 2=ðhwo � hboÞ; ð4:4Þ

where

hwo ¼ 1=s
Z s

0

hw dt: ð4:5Þ

As for the average bulk temperature, two expressions

were given, the second was used:

hbo ¼
Z s

0

Z
hu da


 �
dt

Z s

0

Z
u da


 �
dt

�
; ð4:6aÞ

hbo � hst b ¼
Z s

0

Z
hð � hstÞ uð � ustÞ da dtZ s

0

Z
u da dt

�
: ð4:6bÞ

In comparing Nuo with Nust ¼ 2=ðhst w � hst bÞ they have
implicitly assumed that hw o is the same as hst w, which is
strictly valid for the fully developed temperature field

only. In fact, if we take the time average of the energy

equation, we get

Pr1=s
Z s

0

uoh=ox dt ¼ r2�ho: ð4:7Þ

Comparing it with the steady equation

Prust ohst=ox ¼ r2�hst; ð4:8Þ

we find that both equations are equivalent if and only if

1=s
Z s

0

uoh=ox dt ¼ 1=s
Z s

0

u dt

 �

1=s
Z s

0

oh=ox dt

 �

¼ uo oho=ox: ð4:9Þ

This last condition is satisfied for fully developed tem-

perature profile only, where the axial temperature gra-

dient becomes constant independent of space and time.

Hence, the definition of the time average Nusselt num-

ber is also limited to the case studied, i.e. fully developed

constant wall heat flux.

Guo and Sung [8] studied the definition of time av-

erage Nu for the constant wall heat flux case. They have
proposed four different definitions summarized in

Table 1.

Values of Nuð1Þo were always less than Nust. Values of
Nuð2Þo are still less than Nust, except for low X and very

high b (near flow reversal) where it may slightly exceed
Nust. It is clear that Nuð3Þo is an arithmetic mean value of

the instantaneous Nu, whereas Nuð2Þo is a harmonic mean

one. Obviously, Nuð3Þo > Nuð2Þo . Values of Nu
ð3Þ
o are higher

Table 1

Definitions of average Nu proposed by Guo and Sung [8]
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than Nust for low frequencies, even with moderate am-
plitudes. Definition 4 was constructed to deal with the

case of flow reversal. Guo and Sung [8] had the merit of

pointing out the importance of the definition of Nu as
well as proposing a definition valid for the flow reversal

case. However, no argument was given to select the

appropriate definition. Moreover, all definitions con-

cerned the constant wall heat flux case.

In this work, the time average Nu will be based on the

time average heat transfer coefficient ho, which will be
defined here in a rational way satisfying the following

criteria:

1. It should be usable in Newton’s law of cooling

q ¼ ho � area � ðTwo � TboÞ in which Two and Tbo
are the time averages of wall and bulk temperatures,

to give a heat flux q that is compatible with the energy
balance.

2. The thermal resistance 1=ðho � areaÞ should be us-
able in series or parallel with other thermal resis-

tances in the system, to get the correct overall heat

transfer coefficient.

In order to define Tbo let us integrate the energy
equation over a slice of width dx0:

o=ot0
I
V
T dV þ

I
Ac

n � VT da
				
x0þdx0

x0

¼ af

I
Ac

ax � rT da
				
x0þdx0

x0

"
þ Pdx0n:rT jw

#
; ð4:10Þ

where P is the circumference of the duct, Ac its cross-
sectional area, V the volume and n is the unit outward

normal. The first term in the RHS represents the dif-

ference between axial conduction on both sides of the

slice and can be safely neglected. The first term in the

LHS represents the fluid thermal inertia. It vanishes by

taking the time-average of (4.10):

qfCf=s
0� � Z s0

0

I
Ac

n � VT da
				
x0þdx0

x0

 !
dt0

¼ Pdx0=s0
� � Z s0

0

kf n � rT dt0 ¼ Pdx0qwo; ð4:11Þ

where Cf is the heat capacity. Hence in order to be able
to write a simple expression like

_mmoCf dTbo ¼ Pdx0qwo; ð4:12Þ

the definition of Tbo in pulsating flow must be in the

form

Tbo ¼ 1=s0
� � Z s0

0

I
Ac

qfn � VT da

 �

dt0
,

_mmo; ð4:13aÞ

where

_mmo ¼ 1=s0
� � Z s0

0

I
Ac

qfn � V da

 �

dt0: ð4:13bÞ

Hence, definition (4.6a), which appears in Nuð1Þ, had a
physical meaning, but all other definitions appearing in

Nuð2;3;4Þ were groundless. To define the average wall
temperature, suppose an external resistance was con-

nected in series or parallel that is characterized by a

coefficient hout:

qw ¼ houtðTamb � TwÞ; ð4:14Þ

where Tamb is the ambient air temperature. Since both
the resistance and the ambient temperature are steady,

the heat exchanged in a cycle, should be function of the

time average wall temperature Two defined as

Two ¼ 1=s0
� � Z s0

0

Tw dt0: ð4:15Þ

Using (4.15) guarantees the satisfaction of criterion B,

which is not the case of Nuð1Þ. Hence, none of the defi-
nitions proposed by Guo and Sung [8] could satisfy both

criteria A and B. The final expression of ho is

ho ¼ kf=s0
� � Z s0

0

n � rT jw dt0= Twoð � TboÞ; ð4:16Þ

where Two and Tbo are given by (4.15) and (4.13a), (4.13b).
The definition of time average h given here is thus ra-

tionally built such as to guarantee that whenever the

overall rate of heat transfer is enhanced (or degraded) in

pulsating flow, then ho will increase (or decrease).

5. Numerical solution in the thermally developing region

Having established the fact that pulsation had negli-

gible effect on the thermally developed region, it remains

to examine the thermally developing case. The latter

should be relatively more sensible to pulsation, but the

quantification of this effect could only be made through a

numerical solution. This section is devoted to a presen-

tation of the code used, which is based on the finite ele-

ment method (FEM) including all verifications done to

guarantee the validity of the obtained results. The

modified Petrov–Galerkin approach was adopted to

correctly handle the convective term. Linear triangular

elements were used. The code was flexible enough to treat

any polygonal boundary shape with different thermal

boundary condition. The number of nodes in the axial

direction ranged from 70 to 150, while in the direction

normal to the flow it was typically 25. Integration scheme

used was Gauss-quadrature with 10 points per dimension

(i.e. 100 points in each element). Sparse matrices were

constructed and solved using Gauss–Seidel relaxation

technique with successive under relaxation. The conver-

gence criterion for a relaxation (j) was based on a com-

bination of absolute and relative error as follows:

jhðjÞ � hðj�1Þj < 10�11 þmax jhðjÞj; jhðj�1Þj
� �

� 10�11:

ð5:1Þ
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The constructed code concentrated on the periodic

steady state solution, disregarding the initial transient

establishment of oscillations. Since the solution of this

problem is periodic, it was expanded in Fourier series

with X as the fundamental frequency

h x; r; tð Þ ¼ ho x; rð Þ þRe
XN
n¼1

hn x; rð ÞeinXt
( )

; ð5:2Þ

where Re denotes the real part, and i is the imaginary

factor and N the retained number of frequencies. Sub-

stituting for h in (2.12) and applying Galerkin technique
breaks the transient problem into a set of N coupled

complex problems, the nth problem is written as

Pr inXhn

 
þ 2= 1ð þ dn0Þ

XN
m¼0
1=s

Z s

0

u tð Þhmei nþmð ÞXt dt

!

¼ r2�hn: ð5:3Þ

Detailed solution for all combination of control pa-

rameters showed that the amplitudes of all higher-order

harmonics are always negligible compared to that of the

fundamental frequency. Hence the summation will be

limited to N ¼ 1, (i.e. n;m ¼ 0; 1).
Full validation of the code was obtained through the

use of a complete set of test cases each having a known

solution. By complete it is meant that each individual

feature in the code had a specific problem that tests it.

Let us enumerate these features:

1. conduction term;

2. convection term;

3. inertia term;

4. source term (depending on or independent of T);

5. variable thermal conductivity;

6. developing or fully developed;

7. problem domain (Cartesian or cylindrical);

8. boundary condition type (Dirichlet, Neumann or 3rd

type).

The test set consisted of the following cases:

1. Conduction in a square with constant heat source

and three different types of boundary conditions,

which involves features 1, 4 (independent source), 7

(Cartesian) and 8.

2. One-dimensional heat transfer in a fin, which involves

features 1 and 4 (dependent source).

3. One-dimensional conduction with variable thermal

conductivity, which involves features 1 and 5.

4. Developing and fully developed steady convection in

a circular tube with constant wall temperature, which

involves features 2, 6, 7 (cylindrical) and 8 (Dirichlet).

5. Developing and fully developed steady convection in

a circular tube with constant wall heat flux, which in-

volves features 2, 6, 7 (cylindrical) and 8 (Neumann).

6. Fully developed pulsating flow in a circular cylinder

subjected to constant wall heat flux, which involves

features 2, 3, 6 (developed), 7 (cylindrical) and 8

(Neumann).

7. Developing and fully developed pulsating flow in a

channel subjected to constant wall temperature,

which involves features 2, 3, 6, 7 (Cartesian) and 8

(Dirichlet).

Hence every single term in the equation and every single

line in the code had a test case to validate the results in

situations where the term is non-zero or the line was

effectively executed. The first five test cases have ana-

lytical solutions using standard techniques. Test case 6

has an analytical solution that was obtained here in

Section 3. Test case 7 was an exception since its ana-

lytical solution is not known. The instantaneous Nu

obtained here was compared in Fig. 4 with that of Kim

et al. [4]. It is clear that the results are sufficiently close to

validate the code. Differences are mainly due to the

difficulty in obtaining precise numbers manually from

the figure published in [4]. The error in the first six cases

never exceeded 10�6 for one-dimensional problems, 10�5

for 2D conduction problems and 10�3 for 2D convection

Fig. 4. Results of developing thermal profile for the constant wall temperature test case: (a) results of Kim et al. [4]; (b) present work.
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problems. It was also verified that the numerical solu-

tion, for the thermally developing region of a circular

cylinder in a pulsating flow, tends to the analytical so-

lution for fully developed flow downstream of the duct.

Hence, the validity of the code is rigorously established.

6. Finite wall thermal resistance

The effect of each parameter (namely Re, X; b, Pr and
Bi) will be investigated. Generally speaking, variations

in DNu were relatively small, which means that pulsation
has little effect on the time average Nusselt number for

laminar flow.

(1) Effect of Re. As mentioned earlier, if we take as a

characteristic length in the axial direction R � Re, then
the role of Re will be limited to the axial conduction

term. Hence, increasing Re would have as a sole effect

stretching the development zone proportionally to Re

(Fig. 5). Note that as x tends to infinity, the oscillations

damp out and the curve tends to a small negative

number corresponding to the fully developed case.

(2) Effect of X. As mentioned earlier, DNu exhibits a
spatial frequency along the tube length, which damps

out as we approach fully developed conditions (Fig.

6(a)). If we redraw the results in terms of xX (Fig. 6(b)),
we find the following interesting behavior: all curves

acquire the same relative wavelength but with different

amplitudes. Hence the origin of these oscillations is re-

lated to the convection of upstream conditions along the

tube length.

To explain the mechanism, consider for simplicity a

square wave pulsating flow with a flat velocity profile

that starts after a long steady period (Fig. 7(a)), and

assume that quasi-static conditions hold during pulsa-

tion. Fig. 7(b) gives the slope of temperature rise along

the tube corresponding to each constant velocity (high,

average and low velocities). At the beginning of oscil-

lations, the temperature distribution corresponded to

the median slope. During the first half period, velocity is

high; hence each particle will experience a temperature

rise along the low slope. At the end of that half period

we get a distribution as in Fig. 7(c). At the second half

period, each particle will start from the previous tem-

perature and will undergo a temperature rise along the

high slope, to get a distribution as in Fig. 7(d). It is clear

that this will produce a spatial wave having a wave-

length proportional to uo and s, the oscillation period.
Points at different axial locations will undergo temper-

ature oscillations of different amplitudes. They will also

have different phase w.r.t. the phase of velocity oscilla-

tions. These oscillations damp out as we progress along

the duct due to axial mixing. In fact, the actual flow

scheme does not correspond to a flat velocity profile.

Different layers of the fluid oscillate at different phases,

which produces mixing between different layers. The

impact of the above scheme on the time average heat

transfer coefficient ho is as follows. The velocity profile
has different shapes at accelerating and decelerating half

periods. It is relatively steeper near the wall and more

flat towards the center at the decelerating half period.

Hence, the instantaneous heat transfer coefficient is

slightly higher in this half period than in the accelerating

one. Thus, the time average ho will be higher or lower
than the steady one, according to the local phase of

temperature variation. If at a given axial location high h

corresponded to the same period where DT is maximum,
then ho will be higher than the steady one hst. At other
axial locations where maximum DT occurs when h is
low, then ho will be lower than hst.
(3) Effect of b. Evidently, increasing the pulsation

amplitude increases the difference DNu. The relation is
parabolic, which is also plausible due to the quadratic

interaction between velocity and temperature oscilla-

tions in the convective term (Fig. 8).

(4) Effect of Pr. As expected, the higher the Prandtl

number is, the lower would be the amplitude of oscil-

lations in the thermal field (Fig. 9). In fact, higher Pr

corresponds to higher Cf and to lower kf . Increasing heat
capacity Cf will decrease temperature swing for the same
amount of heat and fluid flow, i.e. will damp out effects

due to pulsation. Decreasing kf would decrease the

ability of wall effects to penetrate in the main stream.

The combination of both effects results in a decrease in

the effect of pulsation on the time average Nu as Pr in-

creases.

(5) Effect of Bi. Simulation results showed that as Bi

increases pulsation effect increases. The increase is rela-

tively slight in amplitude, but extends to a greater dis-

tance along the pipe length, before dying at the fully

developed region, as shown in Fig. 10.

To conclude this section, the following remarks will

be given about radiation type boundary conditions.

Transient radiation has recently received attention due

to its numerous industrial applications including laser

assisted machining [14] and glass forming [15]. A direct

application to the configuration studied here, would be

that of an exhaust tube where flue gases exhibit a pul-

sated flow inside the tube, while the outside tube surfaceFig. 5. Effect of Re.
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Fig. 6. Effect of pulsation frequency on heat transfer: (a) dependence of Nu on x; (b) dependence of Nu on xX.

Fig. 8. Effect of b on heat transfer.

Fig. 7. Mechanism of creation of spatial oscillations: (a) time variation of velocity; (b) slope of spatial variation of T; (c) situation after

the first half cycle; (d) situation after one cycle.
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may have a sufficiently high temperature such that ra-

diation cannot be neglected. Under these conditions, the

problem becomes non-linear, which gives rise to the

following interesting fact: The time average heat transfer

rate is greater than the rate due to the time average

temperature difference. To be more specific, if the di-

mensionless temperature had an expression of the form

(5.2) with N ¼ 1 for simplicity, then the time average
heat transfer rate between tube wall and surroundings

qwo would be

qwo ¼ rðDTrefÞ4 h4o
�

� h4amb þ 3h
2
0h
2
1 þ h41=4

�
;

while the rate of heat transfer due to the average tem-

perature difference q00 would be

q00 ¼ rðDTrefÞ4½h4o � h4amb
;

which is certainly less than qwo. The same could be said
about natural convection with the surroundings. In both

cases, non-linearity combined with pulsation may result

in a noticeable enhancement of the time average heat

transfer rate. These subjects are currently under inves-

tigation.

7. Finite wall thermal capacitance

Wall thermal inertia may considerably modify system

dynamics. These effects were studied [16] in the context

of dynamic characterization of flux gages, as well as that

of measuring physical properties [17]. Both have con-

sidered the transient conduction equation in the solid

wall. As a first approximation, wall temperature will be

assumed here constant along the wall thickness s, but

variable along the pipe axis. This assumption is valid for

small thickness, highly conductive walls. It allows us to

simplify the problem, by modeling the effect by a mod-

ification in boundary conditions. If this effect proves to

be important, more detailed analysis would be justified.

Hence the new wall boundary condition would be in the

form

kf oT=or0
		
r0¼R ¼ �qwsCwoT=ot

0		
r0¼R

þ hout Tamb
�

� T jr¼R
�
þ qw: ð7:1Þ

In dimensionless form, this yields

oh=orjr¼1 ¼ 1þ Bi 1ð � hÞ � Pr Iroh=otjr¼1;

where Ir ¼ s=R qs=qf Cs=Cf is simply the ratio of wall
thermal inertia to that of the fluid. The added time de-

rivative term was tested against a simple transient con-

duction problem, having a known analytical solution.

Simulation results (Fig. 11) show that wall thermal

inertia can quickly damp out pulsation effects, especially

at high frequencies. Not only does the amplitude of

oscillation decrease, but also the length necessary to

establish the fully developed case sharply shrinks to only

few spatial periods.

8. Conclusions

Heat transfer in laminar incompressible pulsating

flow in a duct has been theoretically analyzed. The

thermally fully developed case was solved analytically,

while the thermally developing case was calculated using

FEM. Numerical results were fully validated through

the use of a complete set of test cases having known

analytical or numerical solutions. The main contribu-

tions of this work are the following:

1. An analytical solution of the thermally fully devel-

oped case with constant wall heat flux was redone

Fig. 11. Effect of wall thermal inertia.
Fig. 9. Effect of Pr on heat transfer.

Fig. 10. Effect of Bi number on heat transfer.
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in order to correct an error in a previously published

work [6]. The error resulted in an unphysical behav-

ior at high frequency, which was avoided here. The

corrected solution eliminates confusion about the

role of pulsation in the fully developed region, by

proving that its effect is negligible (<1%).
2. A general and rational definition of time average

Nusselt number was constructed. It applies to differ-

ent boundary conditions, guarantees compliance with

energy balance and enables the use of the obtained

thermal resistance in series or parallel with other ther-

mal resistances in the system, which is not the case of

previously proposed averages.

3. The thermally developing region showed relatively

greater sensitivity to pulsation than did the fully de-

veloped region. Differences up to about 6% between

the time average Nusselt number in the thermally de-

veloping region and that of the corresponding steady

problem (DNu) were observed. The difference DNu
varied sinusoidally along the tube length with a spa-

tial period, which was equal to the average fluid ve-

locity multiplied by the time period, and

diminishing amplitude according to a mechanism

that has been explained in this work. The difference

DNu changes sign along tube length, but its space av-
erage is negative.

4. The effects of different control parameters were ana-

lyzed. The sole effect of Re number was to stretch

the thermally developing region. Pulsating effect on

heat transfer increases with pulsation amplitude b
but decreases with pulsation frequency X as well as

Pr number. Different kinds of boundary conditions

were considered. A Biot number Bi was defined to

characterize a finite wall thermal resistance. As Biot

increases from zero to infinity, pulsation effect on

the time average Nusselt number slightly increases.

A finite wall thermal inertia was also considered,

characterized by Ir the ratio of wall to fluid thermal

inertia. It was found that wall thermal inertia damps

out pulsation effect.

5. The controversial subject whether pulsation enhances

or degrades heat transfer is answered here as follows:

As long as we restrict ourselves to laminar incom-

pressible flow, with linear boundary conditions, the

effect of pulsation on the time average heat transfer

coefficient tends to be negative, but remains relatively

small. Non-linear boundary conditions, (e.g. radia-

tion and natural convection) combined with pulsa-

tion may result in a noticeable enhancement of the

time average Nusselt number, as shown by a quick

discussion in this work. Of course turbulence, which

is also a non-linear phenomenon, would give rise to

heat transfer enhancement as a result of pulsation.

Hence, theoretical and experimental studies in pulsat-

ing flow should concentrate on non-linear phenom-

ena.

Appendix A

Moschandreou and Zamir [6] have attempted to

obtain an analytical solution of the fully developed case.

Eqs. (20) and (21) in their text are rewritten here in their

notations:

h00ðrÞ þ h0ðrÞ=r þ a2hðrÞ ¼ gðrÞ; ðA:1Þ

g rð Þ ¼ ð � i=xÞ 1½ � J0 krð Þ=J0 kð Þ
; ðA:2Þ

where

a2 ¼ �ix; k ¼ a=
ffiffiffiffiffi
Pr

p
; ðA:3Þ

which are equivalent to (3.5a), (2.11b) and (3.5b), re-

spectively. They have obtained the following solution:

hðrÞ ¼ ðp=2ÞafJ0ðarÞ½�c1I1 þ I2ðrÞ

þ Y0ðarÞI3ðrÞg; ðA:4Þ

where

c1 ¼ Re oY0 arð Þ=orð Þjr¼1= oJ0 arð Þ=orð Þjr¼1
� �

; ðA:5Þ

I1 ¼
Z 1

0

J0 asð Þg sð Þ ds; ðA:6Þ

I2 rð Þ ¼
Z 1

r
Y0 asð Þg sð Þ ds; ðA:7Þ

I3 rð Þ ¼
Z r

0

J0 asð Þg sð Þ ds: ðA:8Þ

This solution does not satisfy (A.1) as will be shown

here. In fact, the first derivative of h is

h0ðrÞ ¼ ðp=2ÞafaJ 00ðarÞ½�c1I1 þ I2ðrÞ
 þ aY 0
0ðarÞI3ðrÞ

þ Z1ðrÞg;

where

Z1ðrÞ ¼ ½J0ðarÞI 02ðrÞ þ Y0ðarÞI 03ðrÞ
:

The function Z1ðrÞ vanishes by virtue of (A.7) and
(A.8) to leave

h0ðrÞ ¼ ðp=2Þa2fJ 00ðarÞ½�c1I1 þ I2ðrÞ

þ Y 0

0ðarÞI3ðrÞg: ðA:9Þ

The second derivative of h is

h00ðrÞ ¼ ðp=2Þa2faJ 000 ðarÞ½�c1I1 þ I2ðrÞ

þ aY 00

0 ðarÞI3ðrÞ þ Z2ðrÞg; ðA:10Þ

where

Z2ðrÞ ¼ J 00ðarÞI 02ðrÞ þ Y 0
0ðarÞI 03ðrÞ

¼ ½�J 00ðarÞY0ðarÞ þ Y 0
0ðarÞJ0ðarÞ
gðrÞ

¼ ½J1ðarÞY0ðarÞ � Y1ðarÞJ0ðarÞ
gðrÞ
¼ ½2=ðparÞ
gðrÞ: ðA:11Þ
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(The last transformation was based on the Wronskian of

Bessel functions.)

Hence by substituting (A.4), (A.9) and (A.10) in (A.1)

we get for the LHS using (A.11):

LHS ¼ ðp=2Þafa2J 000 ðarÞ þ aJ 00ðarÞ=r
þ a2J0ðarÞg½�c1I1 þ I2ðrÞ

þ ðp=2Þafa2Y 00

0 ðarÞ þ aY 0
0ðarÞ=r

þ a2Y0ðarÞgI3ðrÞ þ agðrÞ=r: ðA:12Þ

The terms between curly brackets vanish since both J0
and Y0 satisfy Bessel equation, hence

LHS ¼ agðrÞ=r;

which is not equal to the RHS of (A.1).

Let us perform the same steps on the solution ob-

tained in this work, given by (3.7), (3.9a), (3.9b) and

(3.10), that is rewritten here for reference

f rð Þ ¼ J0 Krð Þ I4 rð Þ½ þ I5 rð Þ
 þ Y0 Krð ÞI6 rð Þ; ðA:13Þ

where

I4 rð Þ ¼
Z r

0

�
� pJ0 Ksð ÞY 0

0 Kð Þ=2J 00 Kð Þ
�
sg sð Þ ds; ðA:14Þ

I5 rð Þ ¼
Z 1

r
p Y0 Ksð ÞJ 00 Kð Þ
��

� Y 0
0 Kð ÞJ0 Ksð Þ

�
=2J 00 Kð Þ

�
sg sð Þ ds; ðA:15Þ

I6 rð Þ ¼
Z r

0

p J0 Ksð Þ=2½ 
sg sð Þ ds: ðA:16Þ

The first derivative of f is

f 0 rð Þ ¼ KJ 00 Krð Þ I4 rð Þ½ þ I5 rð Þ
 þ KY 0
0 Krð ÞI6 rð Þ þ Z3 rð Þ;

where

Z3 rð Þ ¼ J0 Krð Þ I 04 rð Þ
�

þ I 05 rð Þ
�
þ Y0 Krð ÞI 06 rð Þ:

By direct substitution of integrals from (A.14)–(A.16)

into the definition of Z3, it is clear that it vanishes leaving

f 0 rð Þ ¼ KJ 00 Krð Þ I4 rð Þ½ þ I5 rð Þ
 þ KY 0
0 Krð ÞI6 rð Þ: ðA:17Þ

The second derivative of f is

f 00 rð Þ ¼ K2J 000 Krð Þ I4 rð Þ½ þ I5 rð Þ
 þ K2Y 00
0 Krð ÞI6 rð Þ þ Z4 rð Þ;

where

Z4 rð Þ ¼ KJ 00 Krð Þ I 04 rð Þ
�

þ I 05 rð Þ
�
þ KY 0

0 Krð ÞI 06 rð Þ:

By substitution of the integrals (A.14)–(A.16) and using

the Wronskian as before, we get

Z4 ¼ gðrÞ:

Finally, by substituting f ; f 0; f 00 in (3.5a) it is clear that
the solution obtained here satisfies it.

To obtain a second confirmation of the above cal-

culations, all derivatives were numerically calculated for

both solutions and directly substituted in the differential

equation. Eq. (A.1) was multiplied by r in order to be

compared with (3.5a). A value of Pr ¼ 1 was also taken
to eliminate differences due to different time scales used.

Results are drawn in Fig. 12 clearly showing that the

solution of Moschandreou and Zamir [6] was incorrect,

while that obtained here was correct.

References

[1] E.J. Watson, Diffusion in oscillatory pipe flow, J. Fluid

Mech. 133 (1983) 233–244.

[2] C.H. Joshi, R.D. Kamm, J.M. Drazen, A.S. Slutsky, An

experimental study of gas exchange in laminar oscillatory

flow, J. Fluid Mech. 133 (1983) 245–254.

[3] U.H. Kurzweg, Enhanced heat conduction in oscillating

viscous flows within parallel-plate channels, J. Fluid Mech.

156 (1985) 291–300.

[4] S.Y. Kim, B.H. Kang, J.M. Hyun, Heat transfer in the

thermally developing region of a pulsating channel flow,

Int. J. Heat Mass Transfer 36 (17) (1993) 4257–4266.

[5] S.V. Patankar, Numerical Heat Transfer and Fluid Flow,

Hemisphere, Washington, DC, 1980.

[6] T. Moschandreou, M. Zamir, Heat transfer in a tube with

pulsating flow and constant heat flux, Int. J. Heat Mass

Transfer 40 (10) (1997) 2461–2466.

[7] G. Hafez, O. Montasser, A theoretical study on enhancing

the heat transfer by pulsation, in: 11th International

Mechanical Power Engineering Conference, Cairo, Febru-

ary 5–7, 2000, pp. H128–H137.

[8] Z. Guo, H.J. Sung, Analysis of the Nusselt number in

pulsating pipe flow, Int. J. Heat Mass Transfer 40 (10)

(1997) 2486–2489.

Fig. 12. Comparing the solutions of Moschandreou and Zamir

and the present work.

H.N. Hemida et al. / International Journal of Heat and Mass Transfer 45 (2002) 1767–1780 1779



[9] H.M. Badr, Effect of free-stream fluctuations on laminar

forced convection from a straight tube, Int. J. Heat Mass

Transfer 40 (15) (1997) 3653–3662.

[10] G.B. Russel, W.Z. Black, A. Glezer, J.G. Hartley, Microjet

cooling of single level integrated modules, in: THERMI-

NIC 5, Rome, October 3–6, 1999, pp. 72–75.

[11] H. Herwig, X. You, Thermal receptivity of unstable

laminar flow with heat transfer, Int. J. Heat Mass Transfer

40 (17) (1997) 4095–4103.

[12] J.R. Womersley, Oscillatory motion of a viscous liquid in a

thin walled elastic tube-1: the linear approximation for

long waves, Philos. Mag. 46 (1955) 199–221.

[13] F.P. Incropera, D.P. DeWitt, in: Fundamentals of Heat

and Mass Transfer, Wiley, New York, 1996, p. 886.

[14] J.C. Rozzi, F.E. Pfefferkorn, F.P. Incropera, Y.C. Shin,

Transient thermal response of a rotating cylindrical silicon

nitride workpiece subjected to a transient laser heat source,

Part I, II,TransASME, J.HeatTransfer 120 (1998) 899–915.

[15] R. Siegel, Transient thermal effects of radiant energy in

translucent materials, Trans. ASME J. Heat Transfer 120

(1998) 4–23.

[16] C. Dinu, D.E. Beasley, R.S. Figlioli, Frequency response

characteristics of an active heat flux gage, Trans. ASME J.

Heat Transfer 120 (1998) 577–582.

[17] A. Haji-Sheikh, Y.S. Hong, S.M. You, J.V. Beck, Sensi-

tivity analysis for thermophysical property measurements

using the periodic method, Trans. ASME J. Heat Transfer

120 (1998) 568–575.

1780 H.N. Hemida et al. / International Journal of Heat and Mass Transfer 45 (2002) 1767–1780


